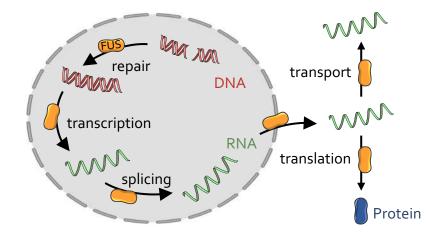


MINISTÈRE DES SOLIDARITÉS ET DE LA SANTÉ

Involvement of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia linked to Fused in Sarcoma protein

LORENC F (1), CASSEL R (1), DUPUIS L (1)


(1) INSERM UMR-S 1118, Central and Peripheral Mechanisms of Neurodegeneration, Centre de Recherche en Biomédecine de Strasbourg, University of Strasbourg, Strasbourg (France)

Acknowledgment: The authors declare no conflict of interest. The authors thank the ARSLA, FILSLAN and e-JR7 organising committee for sharing their work, as well as the University of Strasbourg for funding this project.

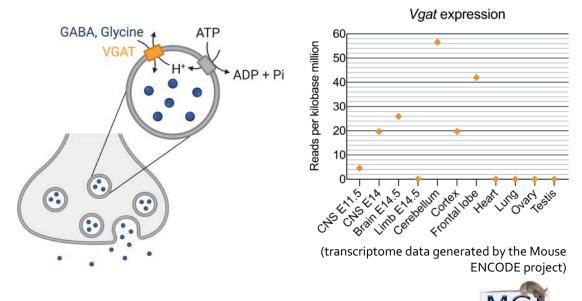
INTRODUCTION

Fused in Sarcoma (FUS) is an ubiquitous and multifunctional RNA/DNA-binding protein involved in cellular functions (see below).

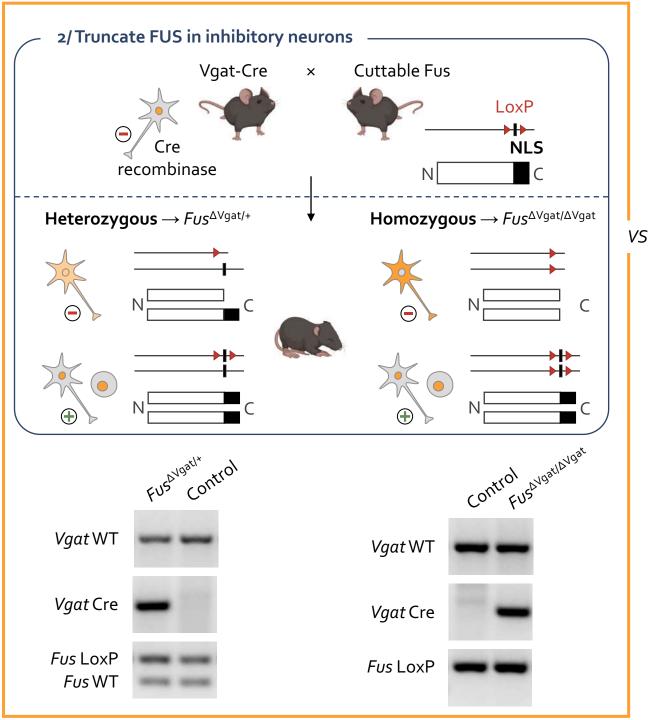
Mutations truncating its nuclear localisation signal (NLS) lead to its **cytoplasmic mislocalisation** in severe and juvenile forms of **amyotrophic lateral sclerosis** (ALS). This delocalisation is also observed in ALS and **frontotemporal dementia** (FTD) patients devoid of *FUS* mutations.

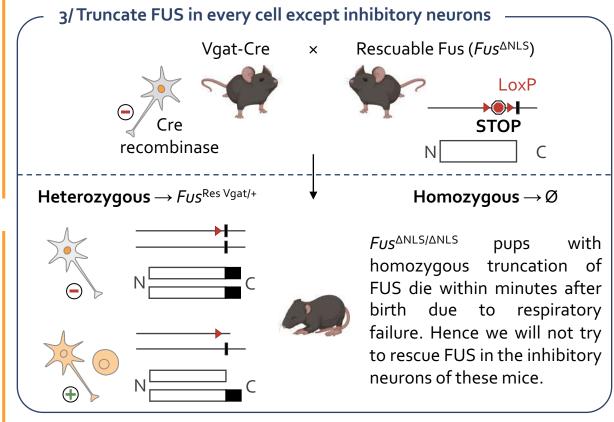
Our laboratory generated mice displaying constitutive and ubiquitous FUS truncation, and subsequent FUS delocalisation. This drove a mildly progressive motor neurons disease and phenotypic features of FTD². Moreover, cortical hyperactivity was associated with molecular and ultrastructural alterations in cortical inhibitory neurons^{1,2}.

WHAT ARE THE ROLE OF INHIBITORY NEURONS IN ALS-FUS AND FTD-FUS?


TWO NEW MOUSE MODELS

We used a Cre-Lox recombination technology to manipulate the **GABAergic system** in *Fus* knock-in mice. These new models will be validated and used to understand the underlying mechanisms linked to FUS truncation.


1/ Targeting Cre expression in inhibitory neurons



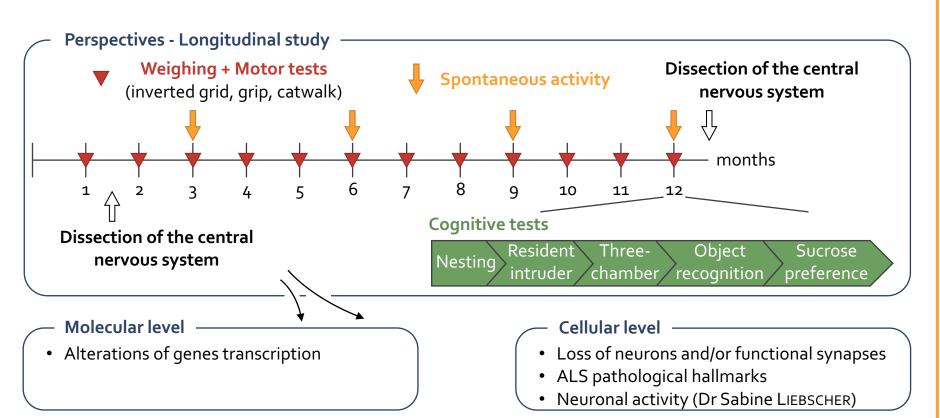
- Cre activity consistent with previous reports of *Vgat* expression
- *Vgat* expressed by a great majority of inhibitory neurons

• *Vgat* expressed during the embryonic development

MODELS VALIDATION

- Recombination efficiency
- Subcellular localisation of FUS

• Cre expression → Vgat-Cre x Cre Reporter (Rosa Td Tomato)


Preliminary results: Tomato expression is visible on the external surface of the olfactory bulbs and cerebellum while it is not the case for other tissues.

EFFECTS OF FUS TRUNCATION IN HETEROZYGOUS MICE

Preliminary results

Fus $^{\Delta Vgat/+}$ and Fus $^{Res\ Vgat/+}$ mice are **viable**. Our older mice are 6 months old. For the moment, they do not exhibit obvious physical abnormalities.

Fus $^{\Delta Vgat/+}$ are **fertile** and show a mean productivity index of seven pups per female.

EFFECTS OF FUS TRUNCATION IN HOMOZYGOUS MICE

Preliminary results

Fus $^{\Delta Vgat/\Delta Vgat}$ are born without obvious physical abnormalities but the vast majority of them **die before weaning**. We are currently defining the average age at death and will then investigate the death's cause.

REFERENCES

¹Sahadevan, et αl. (2021) Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nature Communications 12, 3027.

²Scekic-Zahirovic, Sanjuan-Ruiz, et al. (2021) Cytoplasmic FUS triggers early behavioural alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nature Communications 12, 3028.