
Sleep and Orexinergic Pathway Alterations in Mice Models of Amyotrophic Lateral Sclerosis

GUILLOT S.J.¹, STUART-LOPEZ G.¹, ROUAUX C.¹, DUPUIS L.¹ & BOLBOREA M.^{1,2}

¹INSERM UMR-S 1118 Central and Peripheral Mechanisms of Neurodegeneration, CRBS, University of Strasbourg, Strasbourg, France ²School of Life Science, University of Warwick, Gibber Hill Road, Coventry CV4 7AL, United Kingdom

Acknowledgments

The authors declare no conflict of interest.

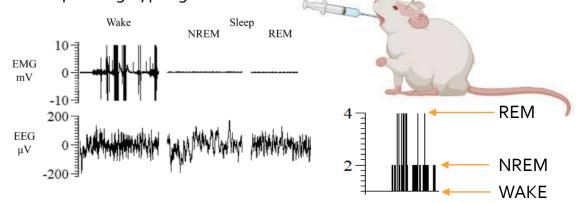
The authors thank the ARSLA, FISLAN and JR7 for sharing their work at the JR7 SLA/MNM symposium, as well as the region Grand Est for funding this project.

Introduction

Amyotrophic lateral sclerosis (ALS) is a **progressive motor neuron disease** leading to an early death. We showed that in ALS mice models (SOD^{G86R} and FUS) and in patients' **melanin-concentrating hormone** (MCH) and **orexin** (Ox) neurons are lost. This depletion is correlated with an increase in **wakefulness**.

Sleep disturbances (increased wakefulness) have been described and appear at a later stage of the disease. Thus, investigating sleep disturbances are of utmost importance to understand the pathomechanisms in ALS.

We investigated the sleep pattern and performed a sleep rescue using Suvorexant® (an anti insomniac drug acting on orexin receptors) before the onset of the symptoms. Wild-type (WT) and SOD1^{G86R} mice electroencephalograms (EEG) and electromyograms (EMG) were recorded to assess the impact on sleep in the disease.

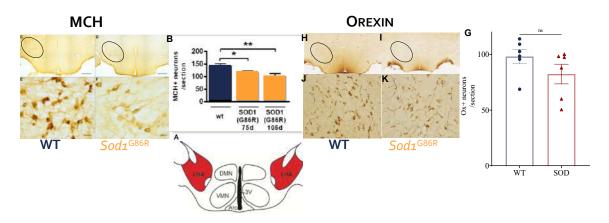

Experiments

• EEG|EMG ELECTRODES SURGERY

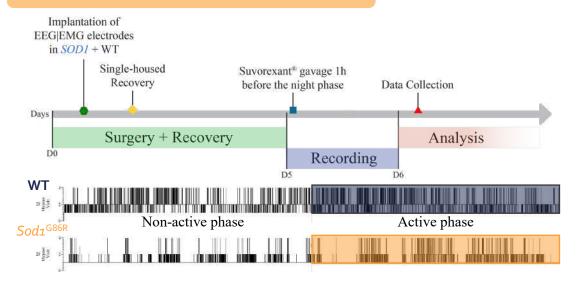
EEG and EMG electrodes were implanted using stereotaxic surgery

- 2 EMG electrodes were implanted on both sides of the neck
- 4 EEG electrodes were set on both sides of the brain

Characterisation of wake, non-rapid eye movement (NREM) and rapid-eye movement (REM) episodes using EEG|EMG and its corresponding hypnogram.



Results

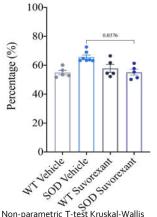

IMMUNOSTAINING OF MCH AND OX NEURONS

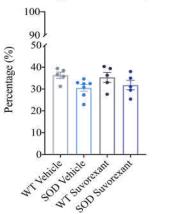
A. Sagittal view of a mouse brain, in red the lateral hypothalamus (LH) where MCH and Ox neurons are known to be present; C-F & H-K. Immunostainings using DAB of, respectively, MCH and Ox neurons in the LH; B-G. Quantification of both MCH and Ox neurons in the LH.

Sod1^{G86R} mice exhibit a **significant decrease** in the **number** of **MCH+** neurons while **no impact** was observed in **Ox+** neurons compared to WT. The **decrease** of **MCH+ neurons** in **Sod1**^{G86R} mice seemed to **worsen with age**.

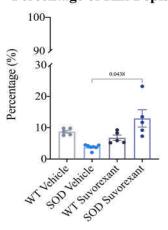
Recording of Cerebral activity

Hypnograms of WT and *Sod1*^{G86R} mice over a 24-hour period administered with vehicle. *Sod1*^{G86R} mice present **lack of REM episodes** and **increased wakefulness** compared to the WT.

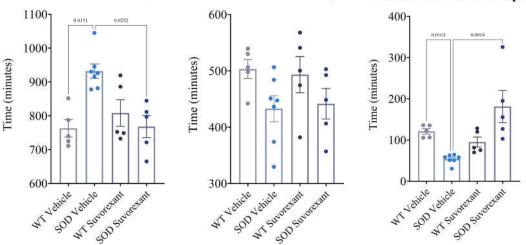



Results

SLEEP RESCUE USING SUVOREXANT®


Percentage of wake episodes

Percentage of NREM episodes


Percentage of REM episodes

Suvorexant® gavage decrease wakefulness and increase REM episodes in *Sod1*^{G86R} mice.

No effect on NREM episodes.

Duration of wake episodes Duration of NREM episodes Duration of the REM episodes

Suvorexant® gavage decrease the duration of wake episodes and increase the duration of REM episodes in Sod1 G86R mice.

No effect on NREM episodes.

Discussion

We showed that *Sod1*^{G86R} mice maintained increased wakefulness and lowered NREM episodes compared to WT.

Suvorexant® had a significantly decreased the percentage and duration of wakefulness and its episodes' duration and increased the percentage as well as the duration of REM episodes in Sod1^{G86R} mice.

