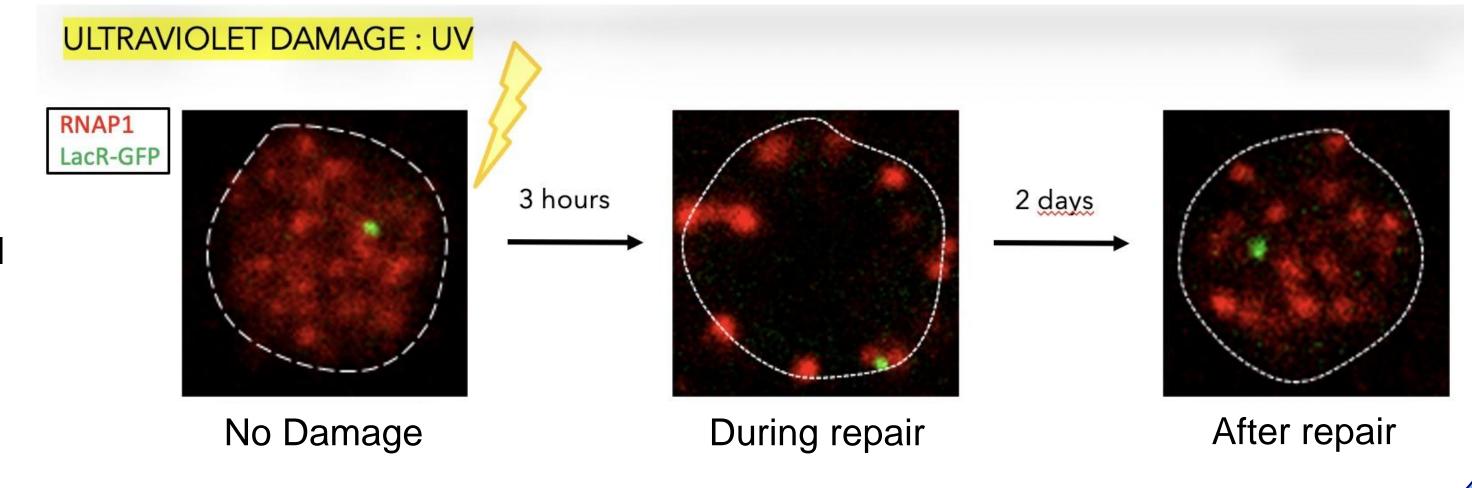
# Role of mutants FUS in nucleolar reorganization following DNA damage

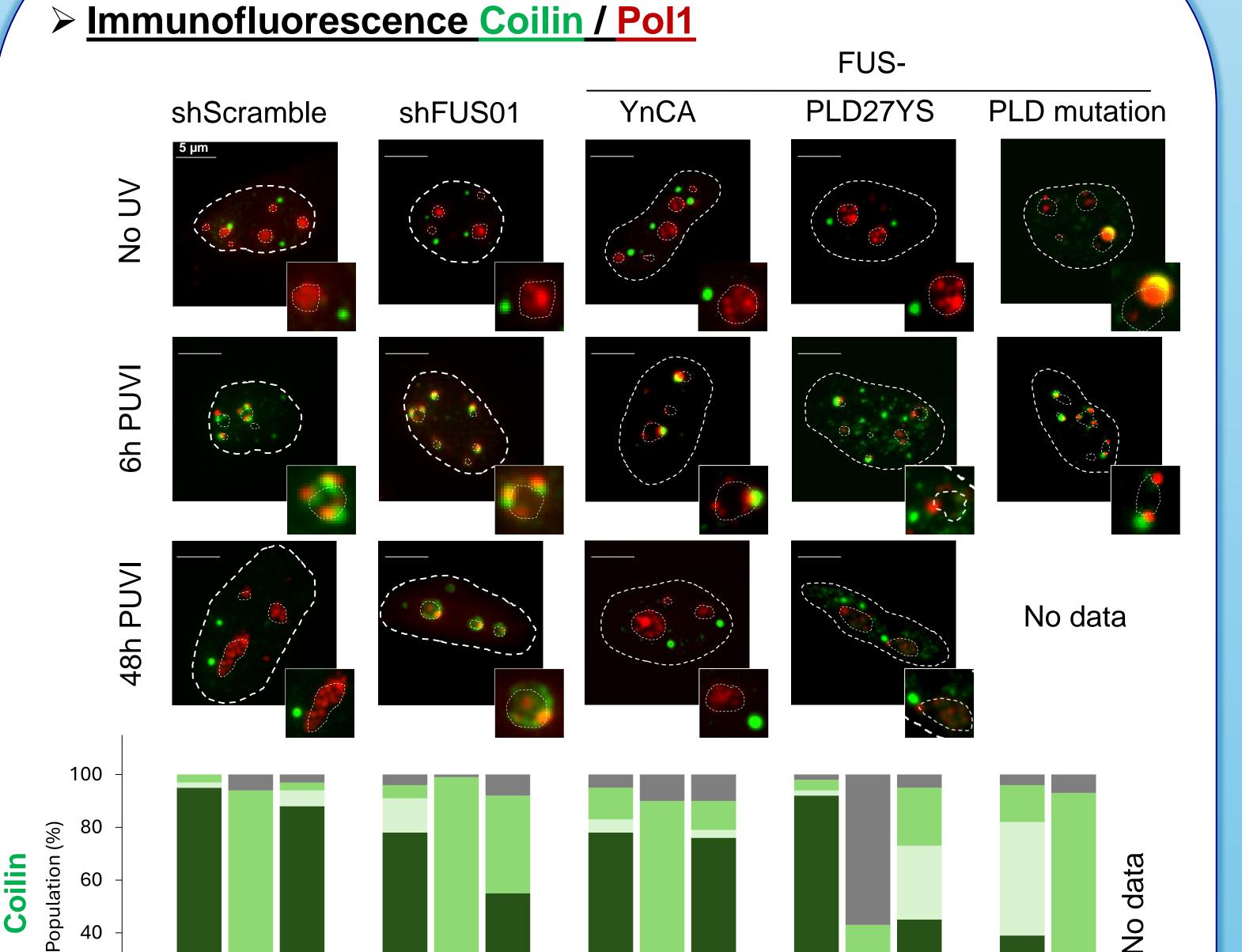



Candice BENEDETTI<sup>1</sup>, Pierre-Olivier MARI<sup>1</sup>, Lise-Marie DONNIO<sup>1</sup>, Luc DUPUIS<sup>2</sup> and Ambra GIGLIA-MARI<sup>1</sup>

candice.benedetti@univ-lyon1.fr

. NeuroMyoGène Institute – Pathophysiology and Genetics of Neuron and Muscle (PGNM) laboratory - CNRS UMR 5261 – INSERM U1315 – UCB Lyon 1 - 8 av. Rockefeller 69008 Lyon (France) 2. Centre de Recherche en Biomedicine de Strasbourg (CRBS) - INSERM U1329 - 1, rue Eugène Boeckel 67084 Strasbourg (France)




- FUS is an RNA / DNA binding protein, localized in the nucleoplasm<sup>1</sup>
- FUS is found to be mutated in ALS<sup>2</sup>, a neurodegenerative disease
- FUS mutations cause cytoplasmic mislocalization and aggregation<sup>2</sup>.
- Under genotoxic stress, nucleolus undergoes reorganization, RNA Polymerase I (RNAP1) and rDNA are relocalized to the periphery of nucleolus<sup>3</sup>.
- Once repair is completed, nucleolar proteins **return** to their original position<sup>3</sup>.
- This is an active process.



#### **Localization of FUS mutant** WB of cell lines construction **Genetic characterization of FUS mutants** (clonal selection) ShFUS + FUS-**FUS** QGSY-rich PLD2 Prion-like domain = PLD PLD FUS-PLD27YS4 Metho PLD mutation FUS-mutation of AA 7, 26, 30, 42, 61, 68, 84, 87, 117, 131 = FUS-PLD mutation<sup>4</sup> -Myc 70kDa--FUS FUS-YnCA<sup>4</sup> 55kDa-YnCA 422 453 α-tub QGSY-rich shRNA expression induced by Doxycycline (5 days)

### Results 1 > Immunofluorescence SMN / Pol1 FUS-YnCA PLD27YS shFUS01 PLD mutation shScramble No UV 6h PU√ 48h PUVI 100 Pol1 20 48h 6h 48h 6h 6h 48h No 6h 48h 6h 48h UV PUVI PUVI PUVI **PUVI** PUVI 100 20 6h 48h PUVI

## Results 2



Mixed Atypical Coilin microfoci Nucleolus CBs/Gems In shScramble (WT): UV-induced DNA damage triggers a transient relocalization of Pol1, SMN, and Coilin to the nucleolar periphery, followed by a return to their original compartments (nucleolus or Cajal bodies) after repair in control cells<sup>1</sup>.

PUVI

In shFUS: FUS depletion impairs this recovery, particularly for SMN and Coilin, which fail to fully return to Cajal bodies. Pol1 also shows defective relocalization.

#### In FUS mutant: FUS mutants show varied phenotypes:

PUVI

20

- > YnCA: Normal behavior, and partial recovery for Pol1 and SMN
- > PLD27YS: partial or abnormal recovery (e.g., Coilin microfoci, delayed relocalization).
- PLD mutant: persistent mislocalization even before UV, with no proper recovery.



PRELIMINARY RESULTS

## **Conclusion / Perspective**

CBs/Gems Nucleolus Mixed

PRELIMINARY RESULTS

**WE KNOW THAT** 

Outside Mixed

FUS is essential for the correct dynamic relocalization of key nuclear components during the UV damage-repair cycle (RNAP1, SMN and Coilin)

•Investigate the molecular mechanisms regulating the relocalization of Pol1, SMN, and Coilin after

**WE WANT TO** 

stress, and FUS's direct role in these pathways. •Explore the functions of FUS's PLD domain, particularly its involvement in nuclear compartment

dynamics and protein/RNA interactions. •Establish a functional link with ALS, by assessing whether similar nuclear relocalization defects occur in disease models.

Undetermined

## References

1. Wang et al. 2015, Nucleic acid-binding specificity of human FUS protein

No

- 2. Yang et al. 2014, Self-assembled FUS binds active chromatin and regulates gene transcription
- 3. Musawi et al. 2023, Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments.
- 4. Scekic-Zahirovic et al, 2016, Toxic gain of function from mutant FUS

## protein is crucial to trigger cell autonomous motor neuron loss